The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
LiDAR-based 3D Object detectors have achieved impressive performances in many benchmarks, however, multisensors fusion-based techniques are promising to further improve the results. PointPainting, as a recently proposed framework, can add the semantic information from the 2D image into the 3D LiDAR point by the painting operation to boost the detection performance. However, due to the limited resolution of 2D feature maps, severe boundary-blurring effect happens during re-projection of 2D semantic segmentation into the 3D point clouds. To well handle this limitation, a general multimodal fusion framework MSF has been proposed to fuse the semantic information from both the 2D image and 3D points scene parsing results. Specifically, MSF includes three main modules. First, SOTA off-the-shelf 2D/3D semantic segmentation approaches are employed to generate the parsing results for 2D images and 3D point clouds. The 2D semantic information is further re-projected into the 3D point clouds with calibrated parameters. To handle the misalignment between the 2D and 3D parsing results, an AAF module is proposed to fuse them by learning an adaptive fusion score. Then the point cloud with the fused semantic label is sent to the following 3D object detectors. Furthermore, we propose a DFF module to aggregate deep features in different levels to boost the final detection performance. The effectiveness of the framework has been verified on two public large-scale 3D object detection benchmarks by comparing with different baselines. The experimental results show that the proposed fusion strategies can significantly improve the detection performance compared to the methods using only point clouds and the methods using only 2D semantic information. Most importantly, the proposed approach significantly outperforms other approaches and sets new SOTA results on the nuScenes testing benchmark.
translated by 谷歌翻译
本文介绍了Z-Code ++,这是一种针对抽象文本摘要优化的新的预训练的语言模型。该模型使用三种技术扩展了艺术编码器模型的状态。首先,我们使用两阶段的预训练过程来改善模型在低资源摘要任务上的性能。该模型首先是使用文本语料库进行语言理解的预先培训的,然后在汇总语料库中不断预先培训,以进行基础文本生成。其次,我们用分离的注意力层代替编码器中的自我发项层,其中每个单词都使用两个向量分别代表其内容和位置。第三,我们使用融合编码器,这是一种以层次方式编码长序列的简单而有效的方法。 Z-Code ++在13个文本摘要任务中的9个跨5种语言中创建了新的艺术状态。我们的模型的参数有效,因为它的表现优于XSUM上600倍较大的Palm-540b,并且在Samsum上的易经的200倍GPT3-175B较大。在零射击和少量设置中,我们的模型大大优于竞争模型。
translated by 谷歌翻译
有效且准确的剩余使用寿命预测是可靠且安全使用锂离子电池的关键因素。这项工作训练了长期记忆复发性神经网络模型,以从各个周期和电压下排放能力的顺序数据中学习,并作为在不同条件下循环的电池电池的周期寿命预测器。使用前60-80个周期的实验数据,我们的模型在大约80个样本的测试集上实现了有希望的预测准确性。
translated by 谷歌翻译
已经提出了高效和自适应计算机视觉系统以使计算机视觉任务,例如图像分类和对象检测,针对嵌入或移动设备进行了优化。这些解决方案最近的起源,专注于通过设计具有近似旋钮的自适应系统来优化模型(深神经网络,DNN)或系统。尽管最近的几项努力,但我们表明现有解决方案遭受了两个主要缺点。首先,系统不考虑模型的能量消耗,同时在制定要运行的模型的决定时。其次,由于其他共同居民工作负载,评估不考虑设备上的争用的实际情况。在这项工作中,我们提出了一种高效和自适应的视频对象检测系统,这是联合优化的精度,能量效率和延迟。底层Virtuoso是一个多分支执行内核,它能够在精度 - 能量 - 延迟轴上的不同运行点处运行,以及轻量级运行时调度程序,以选择最佳的执行分支以满足用户要求。要与Virtuoso相当比较,我们基准于15件最先进的或广泛使用的协议,包括更快的R-CNN(FRCNN),YOLO V3,SSD,培训台,SELSA,MEGA,REPP,FastAdapt和我们的内部FRCNN +,YOLO +,SSD +和高效+(我们的变体具有增强的手机效率)的自适应变体。通过这种全面的基准,Virtuoso对所有上述协议显示出优势,在NVIDIA Jetson Mobile GPU上的每一项效率水平上引领精度边界。具体而言,Virtuoso的准确性为63.9%,比一些流行的物体检测模型高于10%,51.1%,yolo为49.5%。
translated by 谷歌翻译
今天的大部分AI系统都专注于使用自我关注机制和变压器架构在大量多样化的数据中实现令人印象深刻的性能收益。在本文中,我们建议使用外部注意机制增强变压器架构,以带来外部知识和背景。通过将外部信息集成到预测过程中,我们希望减少对更大的模型的需求,并增加AI系统的民主化。我们发现所提出的外部注意机制可以显着提高现有AI系统的性能,使从业者可以轻松地将基础AI模型自定义到许多不同的下游应用程序。特别是,我们专注于勤杂朗语推理的任务,展示所提出的外部注意机制可以增加现有的变压器模型,并显着提高模型的推理能力。拟议的系统,知识外部关注推理(Kear),达到了开放的铜商QA研究基准的人类奇偶校验,其准确性为89.4 \%,与人类准确性为88.9 \%。
translated by 谷歌翻译
本文介绍了WenetsPeech,一个由10000多小时的高质量标记语音组成的多域普通话语料库,2400多小时弱贴言论,大约100万小时的语音,总共22400多小时。我们收集来自YouTube和Podcast的数据,涵盖各种演讲样式,场景,域名,主题和嘈杂的条件。引入了基于光学字符识别(OCR)的方法,以在其对应的视频字幕上为YouTube数据生成音频/文本分段候选,而高质量的ASR转录系统用于为播客数据生成音频/文本对候选。然后我们提出了一种新的端到端标签错误检测方法,可以进一步验证和过滤候选者。我们还提供三个手动标记的高质量测试集,以及WenetsPeech进行评估 - 开发用于训练中的交叉验证目的,从互联网收集的匹配测试,并从真实会议中记录的测试\ _MEETING,以获得更具挑战性的不匹配测试。使用有线exeeEX培训的基线系统,用于三个流行的语音识别工具包,即Kaldi,Espnet和Wenet,以及三个测试集的识别结果也被提供为基准。据我们所知,WenetsPeech是目前最大的开放式普通话语音语料库,其中有利于生产级语音识别的研究。
translated by 谷歌翻译
Content-Controllable Summarization generates summaries focused on the given controlling signals. Due to the lack of large-scale training corpora for the task, we propose a plug-and-play module RelAttn to adapt any general summarizers to the content-controllable summarization task. RelAttn first identifies the relevant content in the source documents, and then makes the model attend to the right context by directly steering the attention weight. We further apply an unsupervised online adaptive parameter searching algorithm to determine the degree of control in the zero-shot setting, while such parameters are learned in the few-shot setting. By applying the module to three backbone summarization models, experiments show that our method effectively improves all the summarizers, and outperforms the prefix-based method and a widely used plug-and-play model in both zero- and few-shot settings. Tellingly, more benefit is observed in the scenarios when more control is needed.
translated by 谷歌翻译
Keyword spotting (KWS) based on deep neural networks (DNNs) has achieved massive success in voice control scenarios. However, training of such DNN-based KWS systems often requires significant data and hardware resources. Manufacturers often entrust this process to a third-party platform. This makes the training process uncontrollable, where attackers can implant backdoors in the model by manipulating third-party training data. An effective backdoor attack can force the model to make specified judgments under certain conditions, i.e., triggers. In this paper, we design a backdoor attack scheme based on Voiceprint Selection and Voice Conversion, abbreviated as VSVC. Experimental results demonstrated that VSVC is feasible to achieve an average attack success rate close to 97% in four victim models when poisoning less than 1% of the training data.
translated by 谷歌翻译
Dialogue summarization has recently garnered significant attention due to its wide range of applications. However, existing methods for summarizing dialogues are suboptimal because they do not take into account the inherent structure of dialogue and rely heavily on labeled data, which can lead to poor performance in new domains. In this work, we propose DIONYSUS (dynamic input optimization in pre-training for dialogue summarization), a pre-trained encoder-decoder model for summarizing dialogues in any new domain. To pre-train DIONYSUS, we create two pseudo summaries for each dialogue example: one is produced by a fine-tuned summarization model, and the other is a collection of dialogue turns that convey important information. We then choose one of these pseudo summaries based on the difference in information distribution across different types of dialogues. This selected pseudo summary serves as the objective for pre-training DIONYSUS using a self-supervised approach on a large dialogue corpus. Our experiments show that DIONYSUS outperforms existing methods on six datasets, as demonstrated by its ROUGE scores in zero-shot and few-shot settings.
translated by 谷歌翻译